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Abstract

Several applications of computer vision e.g. autonomous
driving, warehouse management etc. are nearing deploy-
ment in real-world. However these approaches critically
depend on ‘black-box’ 3D neural networks. Interpreting
and understanding these networks is an important and chal-
lenging problem for vision community. This project at-
tempts to interpret the learning of 3D neural networks
through the lens of model inversion. Specifically, we in-
vestigate what a 3D model learns by trying to re-create an
optimal input based on a perceived output. Recent meth-
ods present solutions for inverting classification and detec-
tion networks, but only for 2D inputs. This project extend
these approaches to 3D which is significantly more complex
and ill-posed. We showcase results on inversion of 3D deep
learning architectures for classification and detection and
further analyse our findings.

1. Introduction

The ability of an AI agent to operate and interact in real
world is critically dependent on it’s understanding of 3D.
Hence there is considerable effort by vision community to
develop neural models which can solve primary 3D vision
tasks of detection [6, 29], classification [15, 21, 30], recon-
struction [4, 10, 11, 25] etc. The success of these models in
existing benchmarks [1,5,20] together with their real world
applications in autonomous driving, virtual/ augmented re-
ality, robotics and online marketplaces is testament to their
prowess. However, the core component of these approaches
are deep neural black-box networks which directly learn the
optimal parameters to solve a particular problem given data.

In real world, it is often possible that (1) our data is
not sufficient or entirely representative of all possible sce-
narios; (2) our loss functions are sub-optimal based on the
given task; (3) our evaluations do not quantify model gen-
eralization effectively etc. Many such problems can sig-
nificantly impact the performance and applicability of deep
neural models particularly for in the wild examples. Model
interpretability, a way to understand what the model learns,
is hence a critical problem solving which is pivotal towards

Figure 1. A random image (left) is fed as input to object detector.
A fixed bounding box (right) is given as the ground truth, we per-
form back-propagation on the input by freezing model weights to
get the optimum input that can generate the desired output

development of safe and trustworthy AI.
Recently, model inversion [2, 3, 9] was introduces as

a new approach for achieving model interpretability. In-
version techniques deal with re-creating an optimal input
which maximizes the probability of a given output, given
a set of frozen model parameters. Fig.1 showcases the in-
version approach wherein for a given layout of a scene with
multiple 3D bounding boxes, the task is to produce an op-
timal input image consistent with given layout. Visualizing
the generated input image gives key insights into what vi-
sual features are relevant and being used by model to make
predictions. It can also highlight if the trained model misses
or ignores certain ‘important’ features from original input
thereby facilitating considerable insights into the learnings
of a neural model.

While there has been some effort [3,9] towards interpret-
ing models for 2D inputs using inversion. However, to the
best of our knowledge there is not significant effort towards
inverting and interpreting deep neural networks for 3D vi-
sion. The task of 3D model inversion is also considerably
more challenging when compared with 2D because of (1)
diverse and complex 3D input representations (Mesh, vox-
els, point-clouds, SDFs etc.) as opposed to images; (2) sig-
nificant task-specific non-differentiable processing stages;
(3) lack of proper 3D shape priors or regularizers etc. This
work aims to interpret 3D models of detection and classifi-
cation using the technique of model inversion.

2. Related Work

3D Object Detection The aim of 3D object detection
is to predict three-dimensional bounding boxes (cuboids).



There is considerable amount of work on 3D object de-
tection using Lidar point clouds [6, 8, 22, 29] or RGB im-
ages [23,24]. A vast majority of recent works [7,14,19,28]
also explore various fusion techniques to combine inputs
from multiple modalities. These models perform exceed-
ingly well on Autonomous Driving benchmarks [1, 5, 20].
CenterNet [32], is a monocular RGB based 3D object de-
tection model with SOTA results on KITTI [5] benchmark.
However deep neural models are exceedingly difficult to in-
terpret. Hence to some extent, we know they work well but
don’t know what they learn. In this work, we aim to in-
vert monocular RGB based 3D object detection models and
further visualize their learning.

3D object classification Qi et al. [15] explored a novel
memory efficient way approach to perform 3D perception
tasks like segmentation, classification etc. directly on sparse
point-clouds. Qi et al. [16] further extended this work by us-
ing deep hierarchial feature learning. There have been sev-
eral works [21, 26, 30] in recent years aimed at using point
clouds for 3D object classification. This project however
explores to interpret the learning of these models through
the lens of inversion.

Model interpretability Miller [12] defined interpretabil-
ity as, ‘the degree to which a human can understand the
cause of a decision’. Simonyan et al. [18] proposed a sim-
ple approach of visualizing the gradients of each pixel for
the ‘interest’ class. This work however suffered from gra-
dient saturation problems. Zhou et al. [31] proposed Class
Activation Mapping (CAM) for identifying discriminative
regions and trades off performance for more transparency.
Selvaraju et al. [17] extended this approach by using gra-
dients flowing through final convolution layer to produce
coarse localization maps. However, even with these ap-
proaches it is difficult to know if even the explanation is
correct or not. Molnar [13] highlights some of these con-
cerns e.g. these approaches could act as edge-detectors and
be insensitive to model and data. Model inversion a recent
approach to attempt model interpretability and is aimed at
re-creating the optimal input based on the perceived output
and model parameters. By re-creating the input ’data’, this
approach explicitly uses the model parameters and can be a
good measure of generalizability.

Inversion There are numerous works on inverting deep
learning-based classification architectures that act on 2D
images [3, 9]. Recent works [2] extend the scope of in-
version to complicated object detection models with non-
differential operations, and stage-wise training. However,
there are no works on inverting deep learning architecture
for classification or detection that operate in the 3D world.
We aim to do just that.

3. Methodology
In model inversion, we aim to generate inputs that per-

fectly match the representations in an intermediate or output
layer of neural network. Mathematically, if 𝑦 is the repre-
sentation at a particular layer and the model is denoted by
𝑓 , we obtain:

𝑥 ′ = arg min
𝑥

L(𝑦, 𝑓 (𝑥)) (1)

We try to predict the input which maximizes the probability
of a particular output. This is in direct contrast to standard
computer vision tasks where the optimization is over the
network 𝑓 rather than 𝑥. Figure 1 illustrates the problem
where left most image maximizes the probability of output.

We perform model inversion for 3D models in 2 settings
- RGB-based 3D object detection and point cloud-based 3D
classification.

3.1. Inverting RGB-based 3D Object Detection

We adapt [2] to our case where the output bounding
boxes are 3D compared to 2D. We invert the CenterNet [32]
3D model that has been trained on KITTI [5] dataset for the
task of 3D object detection. The CenterNet is a heatmap
based model where the model outputs heatmaps and not the
bounding boxes. The process involves non-differentiable
pre-processing steps to generate the input for the model and
post-processing to convert the output heatmaps into the de-
tection boxes. In inversion, our aim to understand the model
and not the pre-processing and post-processing components
that are hand-designed and completely interpretable. There-
fore, we suggest 2 modifications in [2] - a) instead of invert-
ing the end-to-end pipeline, we only invert the model por-
tion in the pipeline since it is the only block that is black-
box. b) we use the ground-truth labels as the starting point
for the inversion since our goal is to understand what the
model has learnt and not how good its detection accuracy
is.

Concretely, we start with a gaussian image (using Im-
ageNet mean and variance) and pass it though the model.
The model is set in eval mode and its weights are frozen. We
perform forward pass to calculate the loss using the stan-
dard losses of the CenterNet model. The training loss for
CenterNet is given by

L𝑚𝑜𝑑𝑒𝑙 = Lℎ𝑒𝑎𝑡𝑚𝑎𝑝+L𝑑𝑒𝑝𝑡ℎ+L𝑑𝑖𝑚+L𝑟𝑜𝑡+L𝑤ℎ+L𝑜 𝑓 𝑓 𝑠𝑒𝑡

(2)
Additionally, as suggested in [2], we also introduce a total
variance (TV) loss in order to reduce the variance of the
generated input.

L𝑟𝑒𝑔 = L𝑇𝑉 (3)

The overall loss equation is given by

L𝑡𝑜𝑡 = L𝑚𝑜𝑑𝑒𝑙 + L𝑟𝑒𝑔 (4)



(a) Ground Truth Objects (b) Predicted Objects

(c) Inverted image (d) Predicted Objects for inverted image

Figure 2. Figure shows the a) ground truth boxes, b) predicted boxes for original image, c) inverted image using ground truth objects d)
inverted image along with detected objects. We can observe in b) that original image misses certain nearby objects - person in center, left
side but is able to detect the distant car (blue left side) even though its not annotated in the ground truth. However, the inverted image d) is
able to detect all the objects same as ground truth.

This gradient is backpropagated through the model to the in-
put and only the input is updated keeping the model weights
frozen. We perform these steps for 2000 iterations to get the
optimized input for the given ground-truth labels. We per-
form clipping on each iteration to ensure that all the input
pixel values are within the variance range of the mean in
order to ensure stability. On every 5 iterations, we perform
gaussian blur of the image to reduce the variance of the in-
put as it gets updated on each iteration.

3.2. Inverting Point Cloud-based 3D Classification

In this experiment, we wish to invert a 3D object classi-
fication network F to obtain the input point cloud that trig-
gers the prediction of a particular target class 𝑐. The input
point cloud P is essentially a set of 3D coordinates. The
inversion process starts with a randomly initialized point
cloud and updates it through gradients obtained while max-
imizing the final class probability. Mathematically,

L = arg min
P

CrossEntropy(F (P), 𝟙𝑖==𝑐) +Φ(P) (5)

where L denotes the loss function to be minimized over
the point cloud P, which is cross entropy loss in the case
of classification. Φ(P) is a regularizer defined on the point
cloud. 𝟙𝑖==𝑐 denotes a one-hot-encoded vector with the tar-
get class index set as 1.

We utilize PointNet++ [15,16] for our study. PointNet++
is a hierarchical neural network that applies PointNet recur-
sively on a nested partitioning of the input point set. At
each level in the hierarchy, an MLP layer is applied on the
inputs point which is followed by a max-pooling layer to
retain the informative points reducing the number of points
at each level. The model has been trained on point clouds

obtained from 3D CAD models dataset- ModelNet40 [27].
ModelNet40 is a collection of internet-obtained 3D CAD
models of 40 everyday objects.

3.2.1 Initialization

We explore multiple ways to initialize a point cloud. i) Uni-
formly at random: The points are randomly initialized in
the range [-0.2, 0.2]. ii) Zero initialization: All points are
initialized to 0. iii) Uniform Spherical Initialization: The
points are randomly initialize in a sphere around 0. The
inversion process would start with a point cloud initialized
through one of the methods mentioned above, and then op-
timized with back-propagation.

3.2.2 Regularization

Just as Gaussian blurring is utilized to regularize RGB im-
ages, we regularize the input point cloud using a neighbor-
hood based smoothing or averaging operation. However,
we need to define what consists neighborhood of a point in
a point cloud to be able to apply the smoothing operation.
To this end, we create a neighborhood-mesh by linking a
point with its nearest 𝐾 points in the euclidean space. Once
the neighbors set N = {. . . } is obtained, the regularization
can be simply written as:

𝑝𝑖 = 𝑝𝑖 +
𝜆

𝐾

N𝐾∑︁
𝑗=N0

(𝑝 𝑗 − 𝑝𝑖) (6)

where 𝑝𝑖 denotes the 3D coordinates of point 𝑖 and 𝜆 the
degree of regularization. Setting 𝜆 = 0 amounts to no reg-
ularization, whereas setting 𝜆 = 1 amounts to replacing the
position of the current point with the average of its neigh-
bor’s positions.



(a) Ground Truth Objects (b) Predicted Objects

(c) Inverted image (d) Predicted Objects for inverted image

Figure 3. In continuation to fig 2, we analyze a more difficult scenario- cluttered cars on a highway. We can observe that the inverted image
c) has some artifacts appearing but still the detection on inverted image is identical to the ground truth. Similar to trend observed in fig 2,
b) misses some cars while prediction.

The above regularizer is not applied as a loss but as a
post-processing step after each gradient update, in a manner
similar to weight-clipping. In the current implementation,
we apply the regularization operation every 10 iterations.

4. Results

In this section we analyze the performance of our inver-
sion based approach for the tasks of object detection and
classification. The goal of our project is to leverage inver-
sion for enabling transparency in the learning of a neural
network. Since interpretability in itself is abstract and ill-
defined, it is difficult to perform quantitative comparisons.
Hence for this section we qualitatively analyze the inver-
sion based approach over 3D perception tasks of detection
and classification.

4.1. Inverting RGB-based 3D Object Detection

We perform our analysis for randomly sampled images
in the validation set. We perform inversion using given set
of detections as described in 3.1 to obtain the inverted im-
age. Fig 2 shows the inverted image for a given sample. On
close examination, we can observe that the inverted image
has similar texture around the objects as the original image.

Next, we perform forward pass on both - original image
and inverted image and compare it with the ground truth
annotations. Fig 2 (a) shows the ground truth, (b) model
output of original image and (d) model output of the in-
verted image for a given sample. We observe that when
we give the original image as input to the model, there are
several missed detections for e.g.- the person in the center,
the persons in the left and cycles in the right. However,
the inverted image is able to generate very high quality de-
tections which are identical to the ground truth. The model
weights are frozen during the entire process of inversion and

we also observe that objects created by inversion have sim-
ilar structure as those of natural objects (e.g. inverted image
of a person in fig. 2 is similar to a standing human). We
can hence say that the inversion process has some learnt
meaningful representation of objects in the image. At the
same time, this also shows us that the training of the orig-
inal model [32] has certain issues as it is not able to detect
visually simple person in the center.

In fig 3 we pick a more difficult sample (multiple cars
cluttered in left). We observe that the inverted image has
some weird artefacts with no clear object boundaries in the
cluttered region. Since, CenterNet outputs heatmaps, we
believe that the cluttered objects cause the output heatmaps
to dissolve for the cluttered environment creating similar
effect on the inverted image as well. Interestingly, we still
observe that although the model output for original image
misses several detections, the model output for inverted im-
age has identical detections as the ground truth. Since, there
are no clear object boundaries in the inverted image, it’s
hard to say that the model has learnt object representations
in the cluttered environments.

4.2. Inverting Point Cloud-based 3D Classification

The inversion is successful for all our runs i.e. the input
point cloud converged to a solution that was classified as
the target class by the network. However, in terms of being
interpreted by humans, the results varied a lot depending on
the inversion settings.

We visualize the obtained inverted point clouds in Fig-
ure 4. It is interesting to see that the PointNet++ [16] model
captures global shape of the object and ignores finer details.
For instance, the inverted point cloud for the person class
looks like a vertical pole. For car class, the four corners are
identified and for the airplane class, the end points of the
wings and the front is identified.
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Figure 4. Inverted examples for point cloud-based 3D classification. We observe that we get visually similar inverted point cloud for
with/without regularization implying that regularization has little impact on inversion for point clouds.

Initialization Initial Final

Zero

UniformCube

Figure 5. Comparison of zero (nearly zero) and uniform different
initialization schemes for point cloud inversion. We observe that
zero initialization works better than the uniform cube initializa-
tion.

Observation 1: The success of inversion depends on the
initialization of point cloud as shown in Figure 5. Contrary
to models trained on images, inverting 3D models trained
on point clouds is heavily dependent on the initialization.
From our experiments we observe that if the point cloud is
initialized randomly, the inversion process doesn’t drasti-
cally change the initial positions leading to an inverted out-
put that visually looks random. Surprisingly, initializing the
points to be either zero or uniformly spread out really close
to zero results in better looking outputs.
Observation 2: Regularization has little effect on the ob-

tained inverted point cloud as depicted in Figure 4. For our
experiments, we fix the regularization strength 𝜆 to be 1.
We observe that the resulting inverted point cloud looked
more spherical ie. points were spread out around the cen-
ter. However, visually the results do not look better than
the non-regularized version. In fact, for objects like car, the
regularization hurts a bit.

5. Conclusion
We invert the RGB-based 3D object detector and

LiDAR-based 3D image classification model. For RGB-
based 3D object detector, we observe that with proper hy-
perparameter tuning along with various optimization tricks,
model inversion works well and we are able to mimic the
ground truth for multiple images. The inverted images are
also contain meaningful boundaries around the objects in
the images if the scenes are not too cluttered.
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